venerdì 1 febbraio 2013

Tao discreto


In questa parte specifica Tart definisce e descrive in modo più particolareggiato gli stati di coscienza discreti:

Discrete States of Consciousness

The terms state of consciousness and altered state of consciousness have become very popular. As a consequence of popularization, however, the terms are frequently used in such a loose fashion as to mean almost nothing in particular. Many people now use the phrase state of consciousness, for example, to mean simply whatever is one one's mind. So if I pick up a water tumbler and look at it, I am in "water tumbler state of consciousness," and if I now touch my typewriter, I am in "typewriter state of consciousness." Then an altered state of consciousness simply means that what one is thinking about or experiencing now is different from what it was a moment ago.
To rescue the concepts of state of consciousness and altered state of consciousness for more precise scientific use, I introduce the terms and abbreviation discrete state of consciousness (d-SoC) and discrete state of consciousness (d-ASC). I discussed the basic theoretical concepts for defining these crucial terms. Here, I first describe certain kinds of experiential data that led to the concepts of discrete states and then go on to a formal definition of d-SoC and d-ASC.

Mapping Experience

Suppose that an individual's experience (and/or behavior and/or physiology) can be adequately described at any given moment if we know all the important dimensions along which experience varies and can assess the exact point along each dimension that an individual occupies or experiences at a given moment. Each dimension may be the level of functioning of a psychological structure or process. We presume that we have a multidimensional map of psychological space and that by knowing exactly where the individual is in that psychological space we have adequately described his experiential reality for that given time. This is generally accepted theoretical idea, but it is very difficult to apply in practice because many psychological dimensions may be important for understanding an individual's experience at any given moment. We may be able to assess only a small number of them, and/or an individual's position on some of these dimensions may change even as we are assessing the value of others. Nevertheless, the theory is an ideal to be worked toward, and we can assume for purposes of discussion that we can adequately map experience.
To simplify further, let us assume that what is important about an individual's experiences can be mapped on only two dimensions. We can thus draw a graph, like Figure 5-1:
Each small circle represents an observation at a single point in time of where a particular individual is in this two-dimensional psychological space. In this example, we have taken a total of twenty-two binary measures at various times.
The first thing that strikes us about this individual is that his experiences seem to fall in three distinct clusters and that there are large gaps between these three distinct clusters. Within each cluster this individual shows a certain amount of variability, but he has not had any experiences at all at points outside the defined clusters. This kind of clustering in the plot of an individual's locations at various times in experiential space is what I mean by discrete states of consciousness. Put another way, it means that you can be in a certain region of experiential space and show some degree of movement or variation within that space, but to transit out of that space you have to cross a "forbidden zone" where you cannot function and/or cannot have experiences and/or cannot be conscious of having experiences; then you find yourself in a discretely different experiential space. It is the quantum principle of physics applied to psychology. You can be either here or there, but not in between.
There are transitional periods between some d-SoCs; they are dealt with in more detail later. For now, being in a d-SoC means that you are in one of the three distinct regions of psychological space shown in Figure 5-1.
Now let us concretize this example. Let us call the vertical dimension ability to image or hallucinate, varying from a low of imaging something outside yourself but with nothing corresponding in intensity to a sensory perception, to a high or imagining something with all the qualities of reality, of actual sensory perception. Let us call the horizontal dimension ability to be rational, to think in accordance with the rules of some logic. We are not now concerned with the cultural arbitrariness of logic, but simply take it as a given set of rules. This dimension varies from a low of making many mistakes in the application of this logic, as on days when you feel rather stupid and have a hard time expressing yourself, to a high of following the rules of the logic perfectly, when you feel sharp and your mind works like a precision computer.
We can assign names of known d-SoCs to the three clusters of data points in the graph. Ordinary consciousness (for our culture) is shown in the lower right-hand corner. It is characterized by a high degree of rationality and a relatively/ low degree of imaging ability. We can usually think without making many mistakes in logic, and our imaginings usually contain mild sensory qualities, but they are far less intense than sensory perceptions. Notice again that there is variability within the state we call ordinary consciousness. Logic may be more or less accurate, ability to image may vary somewhat, but this all stays in a range that we recognize as ordinary, habitual, or normal.
At the opposite extreme, we have all experienced a region of psychological space where rationality is usually very low indeed, while ability to image is quite high. This is ordinary nocturnal dreaming, where we create (image) the entire dream world. It seems sensorily real. Yet we often take considerable liberties with rationality.
The third cluster of data points defines a particularly interesting d-SoC, lucid dreaming. This is the special kind of dream named by the Dutch physician Frederick Van Eeden, in which you feel as if you have awakened in terms of mental functioning within the dream world: you feel as rational and in control of your mental state as in your ordinary d-SoC, but you are still experientially located within the dream world. Here both range of rationality and range of ability to image are at a very high level.
Figure 5-1 deliberately depicts rationality in ordinary nocturnal dreaming as lower than rationality in the ordinary d-SoC. But some nocturnal dreams seem very rational for prolonged periods, not only at the time but by retrospectively applied waking state standards. So the cluster shown for nocturnal dreaming should perhaps be oval and extend into the upper right region of the graph, overlapping with the lucid dreaming cluster. This would have blurred the argument about distinct regions of experiential space, so the graph was not drawn that way. The point is not that there is never any overlap in functioning for a particular psychological dimension between two d-SoCs (to the contrary, all the ones we know much about do share many features in common), but that a complete multidimensional mapping of the important dimensions of experiential space shows this distinct clustering. While a two-dimensional plot may show apparent identity or overlap between two d-SoCs, a three-dimensional or N-dimensional map would show their discreteness. this is important, for d-SoCs are not just quantitative variation on one or more continua (as Figure 5-1 implies), but qualitative, pattern-changing, system-functioning differences.
A d-SoC, then, refers to a particular region of experiential space, as shown in Figure 5-1, and adding the descriptive adjective altered simply means that with respect to some state of consciousness (usually the ordinary state) as a baseline, we have made the quantum jump to another region of experiential space, the d-ASC.The quantum jump may be both quantitative, in the sense that structures function at higher or lower levels of intensity, and qualitative, in the sense that structures in the baseline state may cease to function, previously latent structures may begin to function, and the system pattern may change. To use a computer analogy, going from one d-SoC to a d-ASC is like putting a radically different program into the computer, the mind. The graphic presentation of Figure 5-1 cannot express qualitative changes, but they are at least as important or more important than the quantitative changes.
Figures 5-2 and 5-3 illustrate the qualitative pattern difference between two d-SoCs. Various psychological structures are show connected information and energy flows into a pattern in different ways. The latent pattern, the discrete altered state of consciousness with respect to the other, is shown in lighter lines on each figure. The two states share some structures/functions in common, yet, their organization are distinctly different.
Figure 5-2. Representation of a d-SoC as a pattern of energy/awareness flow interrelating various human potentials. Lighter lines show a possible d-ASC pattern.
Figure 5-3. Representation of a d-ASC as a reorganization of information and energy flow pattern and an altered selection of potentials. The b-SoC is shown in lighter lines.
Figures 5-2 and 5-3 express what William James meant when he wrote:

Our ordinary waking consciousness...is but one special type of consciousness, whilst all about it, parted from it by the filmiest of screens, there lie potential forms of consciousness entirely different. We may go through life without suspecting their existence; but apply the requisite stimulus, and at a touch they are all there in all their completeness, definite types of mentality which probably somewhere have their field of application and adaptation. No account of the universe in its totality can be final which leaves these other forms of consciousness quite disregarded. How to regard them is the question—for they are so discontinuous with ordinary consciousness.
It is important to stress that the pattern differences are the essential defining element of different d-SoCs. Particular psychological functions may be identical to several d-SoCs, but the overall system functioning is quite different. People still speak English whether they are in their ordinary waking state, drunk with alcohol, stoned on marijuana, or dreaming; yet, we would hardly call these states identical because the same language is spoken in all.

Definition of a Discrete State of Consciousness

We can define a d-SoC for a given individual as a unique configuration or system of psychological structures or subsystems. The structures vary in the way they process information, or cope, or affect experiences within varying environments. The structures operative within a d-SoC make up a system where the operation of the parts, the psychological structures, interact with each other and stabilize each other's functioning by means of feedback control, so that the system, the d-SoC, maintains its overall pattern of functioning in spite of changes in the environment. Thus, the individual parts of the system may vary, but the overall, general configuration of the system remains recognizably the same.
To understand a d-SoC, we must grasp the nature of the parts, the psychological structures/subsystems that compose it, and we must take into account the gestalt properties that arise from the overall system — properties that are not an obvious result of the functioning of the parts. For example, the parts of a car laid out singly on a bench tell me only a little about the nature of the functioning system we call an automobile. Similarly, a list of an individual's traits and skills may tell me little about the pattern that emerges from their organization into a personality, into a "normal" state of consciousness. But understand adequately either the car or the individual, I have to study the whole functioning system itself. To illustrate this, let us go back to the question about whether you are dreaming you are reading this book rather than actually reading it in your ordinary d-SoC. To conclude that what was happening was real (I hope you concluded that!) you may have looked at the functioning of your component structures (my reasoning seems sound, sensory qualities are in the usual range, body image seems right) and decided that since these component structures were operating in the range you associate with your ordinary d-SoC, that was the condition you were in. Or you may have simply felt the gestalt pattern of your functioning, without bothering to check component functions, and instantly recognized it as your ordinary pattern. Either way, you scanned data on the functioning of yourself as a system and categorized the system's mode of functioning as its ordinary one.

Discreteness of States of Consciousness

Let me make a few further points about the discreteness of different states consciousness, the quantum gap between them.
First, the concept of d-SoCs, in its commonsense form, did not come from the kind of precise mapping along psychological dimensions that is sketched in Figure 5-1. Rather, its immediate experiential basis is usually gestalt pattern recognition, the feeling that "this condition of my mind feels radically different from some other condition, rather than just an extension of it." The experiential mapping is a more precise way of saying this.
Second, for most of the d-SoCs we know something about, there has been little or no mapping of the transition from the baseline state of consciousness (b-SoC) to the altered state. Little has been done, for example, in examining the process by which a person passes from an ordinary d-SoC into the hypnotic state, although for most subjects the distinction between the well-developed hypnotic state and their ordinary state is marked. Similarly, when a person begins to smoke marijuana, there is a period during which he is in an ordinary d-SoC and smoking marijuana; only later is he clearly stoned, in the d-ASC we call marijuana intoxication. Joseph Fridgen and I carried out a preliminary survey asking experienced marijuana users about the transition from one state to the other. We found that users almost never bothered to look at the transition: they were either in a hurry to enter the intoxicated state or in a social situation that did not encourage them to observe what was going on in their minds. Similarly, Berke and Hernton reported that the "buzz" that seems to mark this transitional period is easily overlooked by marijuana users.
So, in general for d-SoCs, we do not know the size and exact nature of the quantum jump, or indeed, whether it is possible to effect a continuous transition between two regions of experiential space, thus making them extremes of one state of consciousness rather than two discrete states.
Because the science of consciousness is in its infancy, I am forced to mention too frequently those things we do not know. Let me balance that a little by describing a study that has mapped the transition between two d-SoCs—ordinary waking consciousness and stage 2 sleep. Vogel et al, using electroencephalographic (EEG) indices of the transition from full awakeness (alpha EEG pattern with occasional rapid eye movement, REMs) to full sleep (stage 2 EEG, no eye movements), awoke subjects at various points in the transition process, asked for reports of mental activity just prior to awakening, and asked routine questions about the degree of contact with the environment the subjects felt they had just before awakening. They classified this experiential data into three ego states. In the intact ego state, the content of experience was plausible, fitted consensus reality well, and there was little or no feeling of loss of reality contact. In the destructuralized ego state, content was bizarre and reality contact was impaired or lost. In the restructuralized ego state, contact with reality was lost but the content was plausible by consensus reality standards.
Figure 5-4
Figure 5-4 (from G. Vogel, D. Foulkes, and H. Trosman, Arch. Gen. Psychiat., 1966, 14, 238-248) shows the frequency of these three ego states or states of consciousness with respect to psychophysiological criteria. The psychophysiological criteria are arranged on the horizontal axis in the order in which transition into sleep ordinarily takes place. You can see that the intact ego state is associated with alpha and REM or alpha and SEM (slow eye movement), the destructuralized ego state mainly with stage 1 EEG, and the restructuralized ego state mainly with stage 2 EEG. But there are exceptions in each case. Indeed, a finer analysis of the data shows that the psychological sequence of intact ego — destructuralized ego — restructuralized ego almost always holds in the experiential reports. It is more solid finding than the association of these ego states with particular physiological stage. Some subjects start the intact — destructuralized — restructuralized sequence earlier in the EEG sequence than others. This is a timely reminder that the results of equating psychological states with physiological indicators can be fallacious. But the main thing to note here is the orderliness of the transition sequence from one discrete state to another. This kind of measurement is crude compared with what we need to know, but it is a good start.
The intact ego state and the restructuralized ego state seem to correspond to bounded regions of experiential space, d-SoCs, but it is not clear whether the destructuralized ego state represents a d-SoC or merely a period of unstable transition between the b-SoC of the intact state (ordinary consciousness) and the d-ASC of the restructuralized state (a sleep state). We need more data about the condition they have labeled destructuralized before we can decide whether it meets our criteria for a d-SoC. The later discussions of induction of a d-ASC, transitional phenomena, and the observation of internal states clarify the question we are considering here.
We have now defined a d-SoC for a given individual as a unique configuration of system of psychological structures or subsystems a configuration that maintains its integrity or identity as a recognizable system in spite of variations in input from the environment and in spite of various (small) change in the subsystems. The system, the d-SoC, maintains its identity because various stabilization processes modify subsystem variations so that they do not destroy the integrity of the system.
In closing, I want to add a warning about the finality of the discreteness of any particular d-SoC. Stated that the particular nature of the basic structures underlying the human mind limits their possible interactions and so forms the basis of d-SoCs. Note carefully, however, that many of the structures we deal with in our consciousness, as constructed in our personal growth, are not ultimate structures but compound ones peculiar to our culture, personality, and belief system. I want to emphasize the pragmatic usefulness of a maxim of John Lilly's as a guide to personal and scientific work in this area: "In the province of the mind, what one believe to be true either is true or becomes true within certain limits, to be found experientially and experimentally. These limits are beliefs to be transcended."


Lilly's work comparing the mind to a human biocomputer, as well as his autobiographical accounts of his explorations in consciousness, are essential reading in this area.

Nessun commento:

Posta un commento